Thème : Jeux et sports

Synthèse de fluorophores

La fluorescence au service du sport

Arthur De Carvalho 15486

motorsport

ORAC

Utilisation dans le sport :

 \rightarrow **Protection** : gilet fluo, balise fluo, bouée fluo

[4]

→ Perfectionnement : utilisation en F1

avec « Flow-vis »

Fig 1 : Structure de la fluorescéine

→ Développement : sport nocturne, flotteur fluo pour la pêche

Fig 2 : Fluorescéine commerciale

Arthur De Carvalho 15486

Découverte de la fluorescence et définition d'un fluorophore :

→ Étude du phénomène de fluorescence aux XIXème (Stokes) et XXème siècles (Jablonski)

Stokes [8]

Jablonski [9]

Fig 3 : Portraits de Stockes et Jablonski

→ Fluorophores = molécules conjuguées et rigides émettant des photons d'une fréquence plus faible que celle de ceux absorbés lors de l'excitation

Relation de Planck-Einstein : $E = \frac{hc}{\lambda}$ \rightarrow Déplacement/écart de Stokes

Fig 4 : Absorption/émission de photons et décalage de Stockes

Problématique :

- Comment synthétiser un fluorophore et le caractériser ? Comment quantifier la fluorescence ?
- Quels sont les paramètres pouvant influencer les propriétés fluorescentes ?

Objectifs personnels :

Synthétiser un fluorophore Caractériser un fluorophore avec des spectres IR et RMN Etudier l'influence de la structure et du solvant sur la fluorescence des fluorophores

I. Synthèse du fluorophore

I.2 Purification

II. Caractérisations

II.1 Température de fusion

II.2 Spectroscopie IR 💮

III. Quantification de la fluorescence

III.1 Spectroscopie UV-Visible

III.2 Fluorimétrie

III.3 Brillance

III.4 Influence de la structure

III.5 Influence du solvant

Plan

I. Synthèse du fluorophore

I.2 Purification

II. Caractérisations

II.1 Température de fusion

II.2 Spectroscopie IR

II.3 Étude en RMN 💮

III. Quantification de la fluorescence

III.1 Spectroscopie UV-Visible

III.2 Fluorimétrie

III.3 Brillance

III.4 Influence de la structure

III.5 Influence du solvant 💮

Fig 5 : Schémas de synthèse

Fig 6 : Tableau d'engagement :

Réactifs	Etat physique	Masse (g)	Quantité de matière (mmol)	Equivalents	Fig 7 : Photo du Ph-N obtenu
Para- diméthylam inobenzald éhyde	solide	0,50	3,5	1	
Acide hippurique	solide	0,60	3,5	1	
Acétate de sodium	liquide	0,10	1,0	catalyseur	F
Anhydride acétique	liquide	Ø	20	solvant	

Arthur De Carvalho 15486

éluant utilisé : 60% cyclohexane 40% acétate d'éthyle

-> Pas de traces d'impuretés, ni de restes de réactifs : la synthèse a été menée à bout

Fig 9 : Schéma et photo de la plaque CCM à la fin de la synthèse CCM du Ph-N sous lampe UV (254nm)

Aidemonique

A.

Codept (probit P)

I.2-Synthèse du fluorophore : Purification

Fig 10 : Lavage au carbonate de potassium K_2CO_3

Fig 11 : Séchage de la phase organique avec du Na₂SO₄ anhydre

<u>Phase organique :</u> PhN dans de l'acétate d'éthyle

<u>phase aqueuse :</u> K_2CO_3 saturée

Produit récupéré : Ph-N

I.2-Synthèse du fluorophore : Purification

Fig 12 : Passage à l'évaporateur rotatif

Conditions opératoires :

- Chauffage à 40°C
- Pression réduite à 240 mbar

Fig 13 : Ph-O après évaporateur rotatif

I.2-Synthèse du fluorophore : Purification

Fig 14 : Produits Ph-N et Ph-O récupérés après plusieurs jours à l'étuve

Fig 15 : Fluorophores sous lampe UV à 365 nm

Masse = (449,0 ± 2,9) mg Rendement = **43** % Masse = (388,0 ± 2,9) mg Rendement = 38 %

Plan

İ

I. Synthèse du fluorophore

I.1 Synthèse

I.2 Purification

II. Caractérisations

II.1 Température de fusion

II.2 Spectroscopie IR

II.3 Étude en RMN 💮

III. Quantification de la fluorescence

III.1 Spectroscopie UV-Visible

III.2 Fluorimétrie

III.3 Brillance

III.4 Influence de la structure 💮

III.5 Influence du solvant 💮

II.1-Caractérisations : Température de fusion

Ph-N : appareil à fusion lente	composé/T _{fus}	expérimentale	tabulée
	Ph-O	(159 ± 1) °C	159 °C
Ph-O : banc Köfler	Ph-N	(216 ± 1) °C	216 °C

Fig 17 : Tableau récapitulatif des températures de fusion

II.2-Caractérisations : Spectroscopie IR 🐵

l'acide hippurique

Fig 19 : Spectre IR du fluorophore Ph-N

Arthur De Carvalho 15486

II.3-Caractérisations : Etude en RMN¹H 👳

Arthur De Carvalho 15486

II.3-Caractérisations : Etude en RMN ¹³C 🗇

Fig 23 : Structure du Ph-N

Fig 24 : Spectre RMN ¹³C de Ph-N

Plan

İ

I. Synthèse du fluorophore

I.1 Synthèse

I.2 Purification

II. Caractérisations

II.1 Température de fusion

II.2 Spectroscopie IR 💮

II.3 Étude en RMN 💮

III. Quantification de la fluorescence

III.1 Spectroscopie UV-Visible

III.2 Fluorimétrie

III.3 Brillance

III.4 Influence de la structure

III.5 Influence du solvant

III.1-Quantification : Spectroscopie UV-visible

Loi de Beer-Lambert: $A = I \times \varepsilon \times c$

Fig 25 : Spectre d'absorption de Ph-O dans l'acétonitrile à 1,7 × 10 ⁻⁴ mol/L

- Solvant = acétonitrile
- Dissolutions et dilutions successives

-
$$\lambda_{\text{travail}} = \lambda_{\text{max}} = 382 \text{ nm}$$

Fig 26 : Dilutions successives de Ph-O dans l'acétonitrile à différentes concentrations

III.1-Quantification : Spectroscopie UV-visible

Loi de Beer-Lambert: $A = I \times \varepsilon \times c$

Fig 27 : Droite d'étalonnage de Ph-O à λ = 382 nm et de Ph-N à λ = 461 nm

Ph-O : $\varepsilon = (22,6 \pm 1,1) \cdot 10^3 \text{ L.mol}^{-1} \text{ cm}^{-1}$ **Ph-N** : $\varepsilon = (15,20 \pm 0,76) \cdot 10^3 \text{ L.mol}^{-1} \text{ cm}^{-1}$

Comparaison: $\epsilon_{fluorescéine}$ = 80 000 L.mol⁻¹.cm⁻¹

III.2-Quantification : Fluorimétrie

Spectre de fluorescence

Monochromateur

Fig 31 : Fluorimètre

Arthur De Carvalho 15486

Flux lumineux

transmis

Echantillon

III.2-Quantification : Fluorimétrie

nombre de photons émis nombre de photons absorbés

 Φ : Probabilité du fluorophore à émettre un photon (efficacité d'émission)

III.2-Quantification : Fluorimétrie

Produit/référence	Ph-O	Ph-N	Fluorescéine
Rendement quantique	(9,687 ±0,067) x 10 ⁻³	(4,74 ± 0,14) x 10 ⁻²	0,8

Fig 32 : Tableau récapitulatif des rendements quantiques des fluorophores

Fig 33 : Structure des fluorophores

Molécule fluorescente $\Phi_{F} > 0,1$

III.3-Quantification : Brillance

Calcul de la brillance

Produit/référence	Ph-O	Ph-N	Fluorescéine
Brillance (L.mol-1.cm-1)	(218 ± 12)	(714 ± 42)	7,2 x 10 ⁴

Fig 34 : Tableau récapitulatif de la brillance de Ph-O, Ph-N et de la fluorescéine

Fig 35 : Fluorescéine sous UV [11]

Fig 36 : Fluorophore sous UV (365 nm)

III.4-Quantification : Influence de la structure

Fig 37 : Courbe de l'intensité de fluorescence de Ph-O et Ph-N en fonction de la longueur d'onde dans l'acétone

> $\lambda_{\text{excitation}} = 361 \text{ nm}$ $\lambda_{\text{excitation}} = 466 \text{ nm}$

35

30

25

20 15 10

> 5 0 470

Intensité de fluorescence (UA)

OCH₃

N(CH₃)₂

III.4-Quantification : Influence de la structure

Longueur d'onde du maximum d'absorption 🦯

Fig 39 : Structures des fluorophores montrant l'évolution du maximum d'absorption grâce aux différents effets mésomères et inductifs

III.4-Quantification : Influence de la structure

Fig 40 : tableau avec les rendements quantiques des fluorophores

Produit/référence	Ph-O	Ph-N	Fluorescéine
Brillance (L.mol-1.cm-1)	(218 ± 12)	(714 ± 42)	7,2 x 10 ⁴

<u>Explication possible</u> : les liaisons bleues, mêmes si renforcées par mésomérie sont moins rigides que les doubles liaisons ≠ fluorescéine : structure davantage bloquée

III.5-Quantification : Influence du solvant 🗇

Fig 42 : Spectres de fluorescence du Ph-N dans deux solvants différents

III.5-Quantification : Influence du solvant 🐵

Solvatochromisme

Propriété d'une molécule à changer de couleur selon la polarité du solvant dans lequel elle est dissoute.

Conclusion

- \rightarrow Synthèse de deux fluorophores différents
- → Différentes caractérisations qui montrent la pureté et décrivent le produit obtenu

Fig 43 : Produits après purification

[8] [1] Fig 44 : flow-vis sur F1 et sur surface lisse expérimentale à partir d'un mélange fluorophore/paraffine

 → Étude de la fluorescence avec calcul de rendement quantique, brillance
 → Étude de l'influence de la structure et du solvant sur la fluorescence

Fig 46 : Mécanisme de la synthèse

Arthur De Carvalho 15486

Fig 47 : Plaque CCM du produit Ph-O et des réactifs

Fig 48 : Spectres de fluorescence de Ph-O dans différents solvants

Fig 49 : Spectres de fluorescence de Ph-N dans différents solvants

Fig 50 : Spectres UV-visible dans différents solvants

 $c = 1,0x10^{-5} mol/L$

Fig 52 : Spectre IR du fluorophore Ph-O

Application numérique : Rendement

Ph-O	Ph-N
m _{exp} = 388 mg	m _{exp} = 0,449 mg
M _{Ph-O} = 279 g.mol ⁻¹	M _{Ph-N} = 292 g.mol ⁻¹
$\rho = m_{exp} / (M_{Ph-O} \times n_{max})$	$\rho = m_{exp} / (M_{Ph-N} x n_{max})$
= 0,388 / (279 x 3,5 x 10 ⁻³)	= 0,449 / (292 x 3,5 x 10 ⁻³)
= 0,38	= 0,43

Brillance

$B_{\text{Ph-O}} = 9,69 \times 10^{-3} \times 22,60 \times 10^{3}$ = 219	$B_{\text{Ph-N}} = 5,31 \times 10^{-5} \times 15,20 \times 10^{3}$ $= 8,06 \times 10^{-1}$

Rendement quantique

Ph-O	Ph-N
$\begin{array}{l} A_{Ph-N} = 654,526 \; UA \\ n_{ac\acute{etate}\; d'\acute{ethyle}} = 1,3698 \\ A_{r\acute{ef}}(\lambda_{excitation}) = 0,055 \\ A(\lambda_{excitation}) = 0,54 \end{array}$	$\begin{array}{l} A_{Ph-O} = 2394, 6 \; UA \\ n_{ac\acute{etate}\; d'\acute{ethyle}} = 1,3698 \\ A_{r\acute{ef}}(\lambda_{excitation}) = 0, 1 \\ A(\lambda_{excitation}) = 1,0993 \end{array}$
Φ = 9,687 x 10 ⁻³	$\Phi = 4,74 \times 10^{-2}$

Incertitudes

$$ho = rac{m_{exp}}{M_{fluorophore} imes n_{max}}$$
 $u(m) = rac{\Delta(m)}{\sqrt{3}}$
 $u(\rho) = rac{u(m)}{M_{fluorophore} imes n_{max}}$

$$\Delta(m) = 0,0005 \text{ g} \rightarrow u(m) = 2,9 \times 10^{-4} \text{ g}$$

$$ho_{Ph-O}~=(38,00~\pm~0,30)~\%$$

$$ho_{Ph-N}~=(43,00~\pm~0,28)~\%$$

Incertitudes (rendement quantique)

$$egin{aligned} \Phi_F &= \Phi_{F_{ref}} imes \left(rac{n_{ac\acute{e}tate} d'\acute{e}thyle}{n_{r\acute{e}f}}
ight)^2 imes rac{A_{fluorophore} \, dans ac\acute{e}tate}{A_{sulfate} \, de \, quinine}} imes rac{1 - 10^{-A_{r\acute{e}f}(\lambda_{excitation})}}{1 - 10^{-A(\lambda_{excitation})}} \ &\left[rac{u(\Phi_F)}{\Phi_F} = \sqrt{\left(rac{u(A_{fluorophore})}{A_{fluorophore}}
ight)^2 + \left(rac{u(A(\lambda_E))}{A(\lambda_E)}
ight)^2}
ight] \ u(A_{fluorophore}) &= rac{\Delta}{\sqrt{3}} \qquad u(A(\lambda_E)) = rac{\Delta}{\sqrt{3}} \quad \Delta = 0,005 \ &\Delta = 5 \, UA \ &\left[\Phi_F(Ph - O) = (9,687 \pm 0,067) imes 10^{-3} \ &\Phi_F(Ph - N) = (4,74 \pm 0,14) imes 10^{-2} \end{aligned}$$

Arthur De Carvalho 15486

$$\begin{array}{ll} \text{Incertitudes (concentrations)} & c = \frac{c_{initiale} \times V_{pipette}}{V_{fiole}} \\ \\ \frac{u(c)}{c} = \sqrt{\left(\frac{u(V_{fiole})}{V_{fiole}}\right)^2 + \left(\frac{u(V_{pipette})}{V_{pipette}}\right)^2 + \left(\frac{u(c_{initiale})}{c_{initiale}}\right)^2} \\ u(V_{pipette}) = \frac{\Delta}{\sqrt{3}} \quad \Delta = \ 0.1 \ mL \qquad u(V_{fiole}) = \frac{\Delta}{\sqrt{3}} \quad \Delta = \ 0.3 \ mL \\ c_{initiale} = \frac{m_{fluorophore}}{M_{fluorophore} \times V_{fiole}} \quad \frac{u(c_{initiale})}{c_{initiale}} = \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(V_{fiole})}{V_{fiole}}\right)^2} \\ u(m) = \frac{\Delta}{\sqrt{3}} \quad \Delta = \ 0.005 \ g \end{array}$$

Incertitudes (coefficient d'absorption molaire)

$$u(A(\lambda))\,=\,rac{\Delta}{\sqrt{3}}\qquad\Delta\,=\,0,005$$

En entrant les différentes incertitudes sur Regressi, on trouve l'incertitude liée à ɛ

$$egin{aligned} arepsilon_{Ph-O} &= (22,6\,\pm\,1,1) imes 10^3 \ arepsilon_{Ph-N} &= (15,20\,\pm\,0,76) imes 10^3 \ B &= \Phi_F \, imes \,arepsilon \ &= \ M_F \, im$$

Bibliographie

[1]: <u>https://uk.las-motorsport.com/f1/news/flow-visualization-in-formula-1-a-guide-to-aerodynamic-testing-2/5545/</u>

- [2]: <u>https://fr.motorsport.com/f1/news/flow-viz-explications-f1-peinture-visualisation/8452968/</u>
- [3]: <u>https://www.amazon.ca/-/fr/sauvetage-r%C3%A9fl%C3%A9chissante-fluorescente-professionnel-lext%C3%A9rieur/dp/B0B2L7DFBV</u>
- [4]: <u>https://innovexalgerie.com/produit/gilet-fluorescent-haute-visibilite/</u>
- [5]: <u>https://decathlon.gp/products/flotteur-pche-au-pose-pl-flt-b</u>?
- [6]: <u>https://fr.motorsport.com/f1/news/flow-viz-explications-f1-peinture-visualisation/8452968/</u>
- [7]: <u>https://www.gravasac.com/article/213</u>
- [8]: <u>https://www.thefamouspeople.com/profiles/sir-george-stokes-1st-baronet-6219.php</u>
- [9]: <u>https://micro.magnet.fsu.edu/optics/timeline/people/jablonski.html</u>
- [10] : Schéma de principe d'un fluorimètre Piard J., Le Bup, 2015, Octobre, p 1213-1239.
- [11]: <u>https://www.colorey.com/fr/traceurs-hydrologiques.html?limit=5&p=1&product_list_mode=list</u>